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Abstract—Rayleigh successfully analysed inextensional deformation of thin elastic shells by using a simple
energy method. Subsequent workers seem to have been put off from using similar methods for shells which
suffer extensional as well as bending deformations by the fact that the calculations get messy. In this paper
we develop the kinematic relation between surface strains and changes in Gaussian curvature, and show that
this is a very convenient tool for use in energy calculations. We give two examples of energy calculations for
shells loaded by point forces. We find that once the energy expressions have been set up, certain analogies
with simpler and already-solved problems become obvious. This leads to simple solutions. A feature of the
method is that physically important quantities are not obscured, and distinct regimes of structural action are
clearly delineated.

NOTATION

radius of cylindrical and spherical shells

bending stiffness of analagous beam (force.length®) (Fig. 5)
half-wavelength in longitudinal direction
half-wavelength in circumferential direction

= Et*/12(1 - v*), bending stiffness

Young’s modulus

length characterising mode of deformation
half-length of cylindrical shell (Fig. 4) half-length of beam on elastic foundation (Fig. 5)
foundation stiffness (force length™2) (Fig. 5)

mode number in Fourier series

force applied to shell (Fig. 4)

point force applied to beam (Fig. 5)

amplitude of line load (force length™") (Fig. 4)
radius of surface

principal radii of surface

thickness of shell

strain energy

displacement component in axial direction
displacement component in circumferentiai direction
displacement component in normal direction
cartesian co-ordinate; axial co-ordinate

cartesian co-ordinate
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Greek symbols
a angular defect, Fig. 1(a)
a;,a; Lamé parameters, eqn (1)
shear strain
radial displacement of point of application of load on shell
direct strain
dimensionless co-ordinate, = y/L
circumferential co-ordinate
Gaussian curvature
cur\:%turae;zchanges (variously (1,2), (x, ), (x, 8) co-ordinate systems)
=1t"*la
Poisson’s ratio
dimensionless co-ordinate, = x/L
&, & curvilinear co-ordinates, eqn (1)
¢ dimensionless group, =!V2(m/B)
denotes differentiation with respect to x
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RAYLEIGH’S METHOD AND SHELL STRUCTURES
In one of the first papers written on the subject of shell structures Rayleigh{1] analysed the
natural frequencies of vibration of a thin hemispherical bowl by considering the energy which the
bowl would have if it deformed inextensionally. It is therefore surprising that in the subsequent
development of shell theory relatively little use has been made of ‘“Rayleigh’s method” for
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analysing the dynamical, or indeed the statical, behaviour of thin elastic shells. The method has
been used for analysis of shell structures by only a few workers (e.g. Den Hartog[2]) and it
commands only a few pages in the texts on shells by Timoshenko[3], Fligge[4] and
Novozhilov{5].

The main reason for the non-proliferation of Rayleigh’s early work seems to be that although
the method works economically for inextensional deformations of shells, it seems to be much
more cumbersome when extension of the surface, as well as bending, is taken into account. Since
relatively few practical shell structures admit of inextensional modes, Rayleigh’s original method
does not seem to be useful.

The object of the present paper is to re-habilitate Rayleigh’s method for thin elastic shells.
The main problem is to set up suitable modes of displacement involving extension of the surface.
We tackle this by using a “‘well-known” purely kinematic relation between certain derivatives of
the surface extensional strain components and the change in Gaussian curvature. This makes it
possible to work in terms of displacement modes defined only by the component of the
displacement normal to the surface, in some practically important examples at least.

In both of the examples which we use to illustrate the method we find that the resulting strain
energy expressions are exactly analogous to energy expressions for somewhat simpler problems,
viz beams and plates on elastic foundations. As the solutions of these problems are given in
well-known texts (e.g. Timoshenko and Woinowsky-Krieger[3], Hétenyi[6]) we obtain some very
simple solutions. In other words our use of Rayleigh’s method enables us to strike useful
analogies between shell problems on the one hand and simpler and already-solved beam and plate
problems on the other.

Rayleigh’s method is of course always open to the objection that it is approximate, and relies
heavily on the intelligent choice of “‘trial modes™, in contrast to the systematic and rigorous
methods which are the descendents, so to say, of Love’s[7] early work on shells. We hope to
show that our up-dated Rayleigh method produces some valuable resuits for the engineer. In
particular the method picks out distinct regimes of structural behaviour and gives the boundaries
between the regimes in terms of appropriate dimensionless groups (see Fig. 7). This is of course
precisely the kind of information which structural engineers need.

Throughout this paper we shall use the term “Rayleigh’s method” to describe that well-known
family of approximate “energy” methods for elastic structures which is based on postulated
displacement modes. All of our examples involve statical problems, but in a subsequent paper we
shall give examples of dynamical behaviour of shells. We shall assume conditions of small
displacements and small strains throughout.

THE IMPORTANCE OF GAUSSIAN CURVATURE

It is well-known that during purely inextensional deformation of a surface by bending the
Gaussian curvature at a given point on the surface remains constant. We expect therefore that in
a deformation of the surface which involves non-zero extensional strains in the surface, the
Gaussian curvature will change. Indeed, there should be a direct relation between change of
surface strain and change of Gaussian curvature. This kind of relation can be found (sometimes
thinly disguised) in texts on differential geometry (e.g. Weatherburn[8]) and in books and papers
on shells. We give below the relation for a general surface, as derived by Sanders[9], with the
L.H.S. re-arranged:

3 1( da2€x | i€ | day da, )]
=—\|l—|\-—+——+F€eut—
8K Y3 [a, Fra FEARREFTIALLIF TR
d 1( 6(116“ 602512 80:1 Baz )]
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Here ¢, & are curvilinear co-ordinates, ai, . are the Lamé parameters appearing in the first
fundamental form, and ¢; are the surface extensional strains. 8K is the change of Gaussian
curvature on account of the strains.

In the present paper we shall be concerned mainly with cylindrical shells which, in the
undistorted configuration, have zero Gaussian curvature. For such shells eqn (1) simplifies
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considerably, particularly if we have a rectangular cartesian co-ordinate system within the
surface.

It is instructive to derive this special form of eqn (1) from first principles, using the approach
to Gaussian curvature described by Hilbert and Cohn-Vossen[10]. Just as the ‘‘ordinary”
curvature of a plane smooth curve may be defined at any point as the rate of change of angle with
arclength (where by “angle” we mean inclination of the tangent to a datum direction), so the
Gaussian curvature of a smooth three-dimensional surface may be defined at any point as the rate
of change of solid angle with surface area. We find the solid angle subtended by a region of the
surface by mapping the edge of the region onto a unit sphere so that corresponding points on the
two surfaces have parallel normals, and finding the area enclosed on the sphere.

There are some remarkably simple results in connection with the solid angle subtended by
certain surfaces. For example, suppose we construct a cone by cutting out from a flat sheet a
sector of angle a (radians) and joining the edges together, as shown in Figs. 1(a) and (b). It is a
trivial exercise to show that the solid angle subtended by any closed path encircling the vertex is
precisely a: every path of this kind on the cone maps to a circle enclosing area « on the
surface of the unit sphere. Now suppose that the same conical surface is turned into a polygonal
vertex by flattening the sheet, putting in radiai creases (Fig. 1(c)) and re-connecting as in Fig. 1(d)
by folding along the creases. Each plane facet now maps to a point on the unit sphere, and each
crease to an arc of a great circle, but in fact the area enclosed on the unit sphere remains at
exactly . The proof of this is sketched in Hilbert and Cohn-Vossen[10].

(¥
A a
(c)

(a) (b) (d)

Fig. 1. A “vertex” made by folding a flat sheet subtends a solid angle equal to the “angular defect” of the
sheet. The solid angle is not affected by the insertion of creases.

In other words the solid angle subtended by the “cone” is unchanged by inextensional
deformation of the cone. This is closely related to the invariance of Gaussian curvature to
inextensional deformation: indeed the Gaussian curvature of the cone consists entirely of a
singularity at the vertex.

Consider next an arbitrary simply closed polyhedron. At each vertex we define the “angular
defect” as 27r—(sum of interior angles of faces meeting at the vertex). Thus, if the plane figure of
Fig. 1(c) were folded into a vertex the angular defect would be just a. It follows that since the
polyhedron encloses a solid angle of 44, the sum of the angular defects for all vertices is exactly
4. This result may also be obtained easily by using Euler’s theorem relating the numbers of
faces, edges and vertices or an arbitrary simple polyhedron (f + v = ¢ +2). This result is directly
useful in the design of near-spherical triangulated polyhedra as used for Radar-enclosing domes,
etc: all that is necessary is to distribute the angular defect uniformly over all vertices, if the
triangular faces have nearly the same area, or more exactly, to make the angular defect at each
vertex proportional to the mean area of the faces meeting at the vertex. Since the total angular
defect for a complete sphere is always 4, the angular defect at each vertex decreases as the
number of faces increases. As the number of faces becomes very large, the polyhedron
approximates more closely to a spherical surface.

Consider next the problem of applying nearly-square flat facets to a doubly-curved surface.
This problem must be solved, e.g. in making a plywood formwork for a doubly-curved concrete
shell roof. It will be sufficiently general to consider the application of plane, but slightly distorted,
squares of side ¢ to a surface of Gaussian curvature 1/R? (where R > ¢), for example a portion of
a sphere of radius R.

Figure 2(a) shows a patch of 25 squares with which we start. To achieve the required
approximation we must simply arrange an angular defect equal to ¢*/R? at each vertex. A simple
scheme for doing this is shown in Fig. 2(b): as we work out from the centre we must shear the
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Fig. 2. Anapproximation to Gaussian curvature may be imparted to a flat sheet (a) by distorting ““squares”, as

in (b) and (c) so that there is a suitable angular defect as each vertex. In scheme (b) the squares are sheared,

and the (small) angles of shear are as marked. If the original squares are ¢ X ¢, and K is the required Gaussian
curvature, g = Kc’.

squares in such a way that the angular defect is equal at each vertex. The angle of shear found in
this way is indicated on each “‘square”.

A second simple scheme for achieving the same result is shown in Fig. 2(c): here the squares
have been distorted into trapezia. In this case of course the areas of the faces furthest from the
centre are appreciably smaller than ¢* and we should, strictly, allow for this in deciding on the
angular defect. But for only a few squares and ¢ <R, the effect is negligible.

On Fig. 2 we have marked x and y axes, and it is easy to verify that the pattern of shearing in
Fig. 2(b) conforms to

Yay = XY/ R?
while the pattern of y-direction stretching in Fig. 2(c) conforms to
€, =~ x°2R>.
Here the symbols y and ¢ for shear and direct strain respectively, have the usual small-strain
definitions, and x, y are co-ordinates of the midpoints of the “‘squares”. Note that the unit size ¢
does not enter these expressions. In the limit ¢ >0 we obtain the following expressions for

continuous distortion of a flat sheet in order to apply it to a doubly-curved surface:
by shearing:

az'yxy — _1_
oxdy R’
or by y-direction stretching;
de, - 1
ax’ R?
or, similarly, by x-direction stretching;
9’e, __ 1
ayz R 2.

Clearly we can also proceed by a linear combination of these three prescriptions: so we obtain,
finally

Tey i Po_k @)

where K is the local Gaussian curvature of the surface. If the surface remains plane, then K =0
and (2) becomes the well-known equation for compatibility of strain in a plane.

Equation (2) is certainly correct for the distortion of a small part of the x—y plane into a
curved surface. Unfortunately this method of derivation is inadequate for dealing with the more
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general problem of distortion of an originally curved surface: here an x-y co-ordinate system
would be unsuitable, and we need the general version of (2), already given in (1). It is easy to
check that (1) reduces to (2) for a cartesian co-ordinate system.

In the case of a cylindrical surface, which has zero Gaussian curvature initially, eqn (2) holds
intact if the x, y co-ordinate system is used in the obvious way with (say) the x-axis in the
direction of the generators. It can be shown that we may also use (2) in the case of a shallow shell
which touches the x-y plane at the origin.

The main practical point of the present paper is that eqn (1) (or (2) if appropriate) is precisely
the kinematic, or compatibility, equation one needs in order to extend Rayleigh’s method simply
to deal with extensional as well as inextensional deformation of thin shells. In the remainder of
the paper we shall give some examples of this.

There remains one preliminary before we can tackle a shell problem. Consider a smooth
curved surface which has principal radii of curvature R,, R.. The Gaussian curvature K is given
by K = 1/R\R,, which is entirely consistent with the previous definition. Suppose now that the
surface is deformed so that there are small changes of curvature : and «, in directions 1 and 2
respectively. Then the corresponding first-order change in Gaussian curvature §K is given by

K K
0K=p +R.: &)

Note that the change in curvature may also involve a twisting «. with respect to the local
principal axes of the undeformed surface; this however does not enter the expression for the
change in Gaussian curvature. In the case of a shell which is originally in the form of a circular
cylinder of radius a, (3) reduces to

K=% @)

where . is the change in curvature of a generator. Here we have written K rather than 8K, as the
original cylindrical surface has zero Gaussian curvature.

RADIAL POINT LOAD APPLIED TO A SPHERICAL SHELL

We shall now describe in outline the extended “Rayleigh method™ calculations appropriate to
a thin spherical shell of radius a and thickness ¢ subjected to a “‘point load” P acting in a radial
direction. The shell is made of uniform isotropic elastic material having Young’s modulus E and
Poisson’s ratio ». Let w be the (inward) radial displacement. Since we expect the region of
interest to lie in a shallow region of the shell, we shall use a local x, y co-ordinate system, with
origin at the point of application of P.

Our first requirement is a “trial displacement function” w(x, y). (In the present case we would
naturally choose one symmetrical about the z-axis, but we would not necessarily do this in
application of the method to shells of other shapes.) Our trial function should clearly be of the
form shown in Fig. 3. Since we do not know a priori what will be a suitable extent of the affected
zone we define £ =x/L, n = y/L and put w = w(¢, ). L is a ‘“size” parameter for the deflected
region, having the dimension of length.

As far as strain energy of bending is concerned we treat the surface like a plate. Changes of
curvature k., etc. are given by

w1 3w

K‘_W_Pa_gz etc.

w
o N\ T
— L —

Fig. 3. Trial normal displacement function for a shaliow spherical shell sustaining a normal load at the origin.
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The total strain energy of bending is thus given by

UB=—122JJ(KX2+~--)dxdy

where D = Et*/12(1 — v*) and (" + - - ) stands for a complete expression to be given later. This

may therefore be written
UB—L_ V2 24J'I< ) )dfd‘l’} (5)

The integration is performed over the entire local area.
To determine the strain energy of stretching we need to evaluate the expression

Et 1
Wijf (€x2+' -)dx dy.

To find expressions for €, etc. we use eqns (2) and (3): here R, = R, = a, so

€, 3y 076, _ 13 w 18°w ®)
oy’ oxdy Ix° a dx® a oy’

Thus the simplest plan in this example is to have
& =€ =—wla, v, =0. N

(Note that in using (6) we do not need to consider explicitly the tangential components of
displacement, The present mode clearly corresponds to pure radial displacement).
This gives, after re-arrangement,

Uo=E B [ e aan ®

For a given function w(§, n) our next task is to minimise the total strain energy U = Us + Us with
respect to L; having done this we shall then equate the minimised strain energy to :Pwo, which
will give an over-estimate (by Rayleigh's principle) of the stiffness of the structure.

Writing Us = (t*/L*)Us and Us = (L’/a*)Us we find on minimising that

L= (at)uz( U‘B/ Us)m

which can easily be evaluated, for a given function w(¢, n).

The method thus clearly reveals that the linear scale of the extent of the deformed region is of
order (at)'. We also note that the strain energy of stretching involves the integration of w’ over
the surface. This leads in turn to an analogy between the strain energy of stretching of the surface
and strain energy of distortion of an equivalent simple elastic foundation. Therefore, the
approximate solution of the problem by Rayleigh’s method is directly analogous to the (exact)
solution of a plate on an elastic foundation, and we may use available solutions of that problem
(e.g. Timoshenko and Woinowsky Krieger[3], Chap. 8) directly, without the need to select *“trial
functions”. We should expect the resulting stiffness to be an upper bound on the actual stiffness
on account of the fact that we have used in effect an artificial (but of course kinematically
admissible) mode of deformation: in the present case it is purely radial. Further study of this
problem (the details of which will be given elsewhere) shows that the ‘‘plate-on-elastic-
foundation” analogy is preserved even when tangential displacements are allowed; the
foundation stiffness is simply Et/a’ and the ‘plate-on-elastic-foundation” solution[3] is in
excellent agreement with the results of numerical studies by Fliigge and Elling[11].
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THE “PINCHED” CYLINDRICAL SHELL

The shell and its loading are shown in Fig. 4. The shell has length 2/, radius a and uniform
thickness t. It is made of uniform isotropic elastic material having Young’s modulus E and
Poisson’s ratio v. (We shall later make some brief remarks about the effect of various kinds of
anisotropy on the solution.) The shell is loaded by two diametrically opposed forces P applied at
the mid-plane. The co-ordinate system to be used is shown in Fig. 4(a).

Fig. 4. (a) Cylindrical shell showing loading, dimensions and co-ordinate system. (b) A Fourier component of
the loading. (The component shown is n =4).

Following Rayleigh and others (e.g. Hoff[12], Holland[13]) we shall use Fourier series to
decompose the problem into a set of sub-problems. The loading may thus be expressed as a
radially-directed distributed load g applied around the circumference at the mid-plane:

_P 23
q=— + a 2 cosné (n even). )]

Our main task is to find the response of the shell to a single component of the loading shown in
Fig. 4(b).
An obvious mode of deformation to consider involves radial displacement w of the form

w = w.(x) cos né.

We shall use Rayleigh’s method with the help of (2) and (4) to find a suitable function w.(x).

Our first task is to find the strain energy of distortion of a typical small element of the shell
surface. In general, the components of surface strain at any point are €., €, y.o and the
corresponding strain energy (of “stretching”) per unit area is given by

Et ( 2 2 (1 - V) 2 )
A m 6 T €5 + o).
) € + € +2ve€ 5 Ya (10)
Similarly, for components of curvature-change k., ks, kx the corresponding strain energy (of
“bending’’) per unit area is given by

3
ﬁ(TEt_Tz)(K,Z + Kke” + 2UKkeko + 2(1 — 1)) an
Having specified the form of w (the most obvious feature of a mode of deformation) we must
now decide what policy to adopt in relation to the two displacement components u and v. The
advantage of eqn (2) is that we need not do this directly: we can instead specify two of the strain
components. The simplest possibility, which turns out as we shall see to be very satisfactory in a
particular range of geometries, is to take e = v, = 0. We thus obtain, from (2) and (4)

2 "
—%%—;E—W';(x)cos né. (12)
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As there is zero gross axial tension on the shell and we expect €. to be continuous, we can
integrate (12) to give

€= Eaawii(x) cos né. (13)

In order to obtain expressions for the components of curvature change we must, strictly,
investigate the tangential displacement functions u, v, since these variables occur in the
strain-displacement equations (Sanders[9]):

u 1ov w v 1 ou
x T T =TT, x =-—+t——
&= “Tamta T adf (14)
W dw 1w
ot a’ 98’ a’ae’
1o 3o 1 ou (15)
KXB T T oA T a2 A

adxd8 4a ox 4a’df’

Solving (14) in conjunction with (13) and €, = y.s = 0, and using obvious conditions to provide the
necessary constants of integration, we find:

v= —_u%x_) sin ng
—a (16)
u= —nTw,.(x) cos né.
Substituting these expressions into (15) we obtain:
K« = — Wn(x) cos né
Z —
K9=(n pE 1)w..(x)cos né (7
2_ b '
Kxo = um sin n#.
n a

Thus, while the evaluation of “stretching™ strain energy for the assumed mode is easy, the
evaluation of “‘bending” strain energy is messy. But the problem can be simplified satisfactorily
in the following way.

Consider a trial function w. = wo cos mx/b. The expressions for k., ks and «., take the form of
a constant multiplied by cos n@ x cos wx/b or sin n X sin wx/b. The amplitudes of the three

expressions are as follows:

2
™

Kx. ?Wo

o (50

v

(18)

a2
("2—%)1w
K-\ 'n /ba O'J

Now b is a longitudinal half wavelength, and the corresponding circumferential half-wavelength,
say ¢, is equal to wa/n; so the three amplitudes may be expressed as

K, T 1

Wo' b2

Ko w1

W a9
K, ™1 €

wo bc 2a’b’ ]
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Consequently if b > ¢ the bending strain energy is dominated by the «, term, and conversely if
b <c the k, term dominates. Only in the region b=c does the term k. dominate. The
expressions, and the conclusions, are virtually the same as for the bending of a simply-supported
rectangular plate of dimensions b, ¢ in a single half wave in each direction: the bending strain
energy is dominated by bending across the smaller dimension except for nearly square plates,
when twisting plays a major part.

Thus there is a possibility that in the evaluation of the bending strain energy either the «, or
the k. term will be the only significant one. Of course, it is unlikely that the best function w.(x)
will be simply sinusoidal, so this conclusion may be unwarranted in general. However, a detailed
study by A. C. Smith on the “homogeneous’ case of a thin cylindrical shell with zero surface
tractions shows that the two families of roots of the characteristic equations (see Hoff[2} or
Holland [13]) correspond to the strain energy being dominated by either longitudinal stretching
and circumferential bending (“long-wave” solutions) or circumferential stretching and
longitudinal bending (“‘short-wave” and axi-symmetric solutions). The two families merge in the
region where both the circumferential and longitudinal strain energy of stretching cease to be
important, i.e. the behaviour approximates that of a flat plate.

There is no need to investigate this point in any more detail here. We shall simply take the
suggestion from Smith’s work that either circumferential or longitudinal bending dominates the
strain energy of bending, and use it as a hypothesis to be tested later. In the present example we
have already chosen a mode of stretching in which only the longitudinal strains are non-zero, so
we shall try first the hypothesis that in bending the circumferential change of curvature
dominates. This will lead to a solution, and we shall be able to investigate later the magnitude of
bending in the longitudinal direction. We shall see that except in certain cases the strain energy
due to longitudinal bending is negligible: the exceptional cases provide certain limits to the
applicability of the solution. Next we shall try the hypothesis that longitudinal bending
dominates, and find that it immediately leads to a contradiction which is sufficient to exclude it
from further consideration.

Taking «, as the dominant bending term, and ¢, as already calculated (eqn (13)) we have the
following approximate expression for strain energy per unit area of shell:

Et a—‘cosznﬂ(w(x))+24(ft )(n_—l)_

TRy cos’ nB(wn(x))~ (20

Our aim, of course, is to find the function w,(x) which minimises, or nearly minimises, the
total potential energy of the system, i.e. the sum of the strain energy and the potential energy of
the load. As the load is g. cos n@ applied around the circumference at the plane x =0, the
potential energy per unit circumference is — ¢.w.(0) cos’ n#. It is easy to integrate all of these
functions around the circumference, as the mean value pf cos® n6 is 0.5. Consequently the total
potential energy to be minimised is:

LhLm f W)Y dx + o e lz(f‘ )("_—Qwa f (9 (0))" dx = maguwa(0).  (21)

Now in this expression the displacement function w.(x) only appears as such and in its
second derivative. This immediately suggests an analogy with a beam-on-elastic foundation
problem, shown in Fig. 5(a). There is an elastic beam of flexural rigidity B and length 2I, resting
on an elastic foundation of stiffness m, and loaded centrally by a force Q. For a trial displacement
function w(x) the strain energy per unit length of foundation is (m/2)(w(x))?, and the strain energy
of bending per unit length of beam is (B/2)(w"(x))’. Consequently we seek a function w(x) which
minimises the expression

gL(W"(X))2 dx +%L(W(J€))z dx ~Qw(0). 22
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Fig. 5. Beam-on-elastic foundation results for centrally loaded beam (after Hetényi). (b) is a logarithmic plot.
The light lines are asymptotes which correspond to simple special. w(0) is the central displacement.

Clearly there is a direct analogy between the two cases, which may be expressed as follows:

o wEta’
-y’

wE(n* -1y (23)
“N0-"a

B

Q o waq..

Note that the bending stiffness of the analog beam derives from longitudinal stretching of the
shell, while the stiffness of the analog foundation derives from circumferential bending of the
shell. This is not altogether surprising: in the case n = 1 (which we shall not need to use in the
problem under consideration), B is simply the “EI’" value for a tube in pure flexure (except for
the term (1 — »%), which we shall discuss later), and m =0, as the cross-sectional shape does not
change in this mode.

Of course, now that we have reduced the problem to the beam-on-elastic foundation, we can
simply look up whatever results we need in Hetényi[6]. In the present case the central deflection
w(0) is given by

w(0) = Q coshyy +cos ¢y +2
2V2m**B"*  sinh ¢ +sin ¢

where

¥ = 1V2(m/B)"

which is plotted in dimensionless form in Fig. 5(b). For sufficiently small values of ¢ the stiffness
Q/w(0) is equal to 2lm; the beam remains virtually straight. This corresponds exactly to an
inextensional mode for the shell. On the other hand, for large values of ¢ the stiffness is
independent of i; this corresponds to a long beam, with deflection localised to the central region.
Note that there is a relatively short transition region between these two extreme cases. It is
tempting to think of “long” and “short” beams, but this can be misleading: the proper parameter
is [(m/B)"". In the present context there is a further complication, because both B and m depend
on the value of the mode number . Figure 6 presents the data of Fig. 5(b) transformed into “shell”
variables; the “mode flexibility”” w.(0)/q, is a function of mode number n. For sufficiently small
mode numbers the behaviour corresponds to “short beam” i.e. “inextensional” deformation,
while for large mode numbers the deformation is localised. The value, n*, of n at which the two
asymptotes cross (which is found from the date on Fig. 5(b) using values of B and m from (23))
turns out to be proportional to A™"?, where A is a dimensionless length defined by

A =1t a, (24)
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Fig. 6. Schematic plot of mode flexibility (= w,(0)/g.) against mode number n. The diagram is not to scale,

but salient points (where asymptotes intersect) are indicated. The lines of slope —4, ~2 and +4 correspond to

lines on Fig. 5 of slope — 1,0, +3, respectively. The *short-wave” mode flexibilities are independent of n and

are in most cases stiffer (i.e. less flexible) than their long-wave counterparts. Smooth transition-curves between

asymptotes (see Fig. 5) have been omitted. The slopes are all integral because terms (n”> — 1) have been replaced
by n?. X marks the points at which the simple formulas begin to be inaccurate.

For simplicity in plotting Fig. 6 we have replaced the term (n” — 1) wherever it appears by n”. This
discrepancy can be allowed for easily in doing the calculations for a given shell.

We must next investigate the magnitude of the longitudinal bending strain energy term which
we discarded earlier in the interests of simplicity. To the expression (20) should be added the term

27(%]/—2) cos’ nf(wi(x)). 25

This can conveniently be added in to the “longitudinal stretching” term, where it has the effect of
modifying the value of B, and we could if we wished re-define B and alter Fig. 6 accordingly. But
there are, of course, other terms in the expression for bending strain energy (eqn (11)) which we
have also neglected, and it is more satisfactory to proceed by noting that the value of B will be
altered by less than 10% on account of inclusion of longitudinal bending provided n < (a/t)"?,
approximately.

This furnishes the limit marked X in Fig. 6. The exact layout of Fig. 6 thus depends both on
the value of A and of a/t in a given problem; the general character is of course the same.

Having started with a “longitudinal stretching” mode we first examined the hypothesis that
the change of circumferential curvature provided the dominant term in the bending strain energy
expression. If instead we make the hypothesis that longitudinal bending is dominant, the effect is
to replace the second term in (20) by term (25). We see immediately that this simply eliminates the
“elastic foundation” term in our analogy, which is absurd, as equilibrium is not possible.
Consequently we reject this hypothesis.

“*SHORT WAVE-LENGTH’ MODES

Let us return to the point (eqn (12)) where we decided to make €, = y.s =0, and put instead
€ = ¥ =0 as a way of determining a new trial mode. Corresponding to (12) we now have

- 6269 _ W::(x )
W - g o8 né (26)
which gives, on integration and substitution of appropriate boundary conditions,

€= w,._a(JQ cos né. 27

It follows from the strain-displacement relations (14) that u = v = 0, so we obtain in place of (17)

1SS Vol. 13 No. 6—C'
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the following:

Ke = —wn(x)cos né

n2
Ko = ?w,.(x) cos né (28)
Kepg =1 w:l(x) sin né.

These expressions differ by little, particularly for large values of n, from the previous ones. Again
we make two separate hypotheses that x, and k. dominate the strain energy of bending. If
dominates we find an energy expression in which B, the bending stiffness in the beam analog, is
zero; as this leads to absurdities we do not proceed further. On the other hand, if . dominates,
we again find an energy expression corresponding to a beam on elastic foundation, with

wEt’a
BemiTs
(29)
wEt

(1-va’

me

Note that n does not appear in these expressions, and the characteristic length scale is precisely
as for axially symmetric deformation, viz (at)'”. The “mode flexibility”, shown in Fig. 6, is
independent of n, but when the value of n is sufficiently large the circumferential bending effect
becomes significant. The point at which the circumferential bending effect alters the foundation
stiffness by 10% is again n = (a/t)'”, and is shown by X on the diagram.

Of the two kinds of solution (with longitudinal stretching or circumferential stretching,
respectively, predominating) which we have investigated it is clear that the latter gives a lower
modal flexibility in virtually all cases and so must be rejected, by Rayleigh’s principle. In
particular, the constant term on the R.H.S. of (9) produces negligible deflection.

The region where the mode stiffnesses are of comparable magnitude is precisely the region
where our two hypotheses break down. Further investigation shows that for high values of n
stretching of the surface produces insignificant strain energy in comparison with bending, and the
behaviour in fact approximates that of a flat plate. This régime cannot satisfactorily be
investigated in terms of “‘beam on an elastic foundation”.

It is now a simple matter to superpose the effects of various terms in the Fourier series for a
shell of given geometry. It is clear that the fundamental geometrical parameter is A, and the
results are shown in Fig. 7. For a “short” shell—i.e. one with a small value of A —the value of n*
is relatively large (see Fig. 6) so for practical purposes all of the modes are inextensional.
Summation of the appropriate series (to infinity) gives precisely the result quoted by
Timoshenko [3] for the inextensional case; the radial displacement 8 on the point of application of
load is given by

_Lﬂl__l’ﬁ(i‘)ml
=33 Ea \t) v (30)

At the other extreme—Ilarge values of A—all of the modes correspond to “‘long beam” cases
and the summation is again straightforward. Deflection under the load (which is of course
independent of A) is given by

- L Pdpy (ay
6—1.23 Ea t) (31)

For intermediate values of A the modes with lower values of n are inextensional while those
for higher values of n are “long beam” cases. The summation produces a relatively short
transition between the two extremes, as shown in Fig. 7.
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Fig. 7. Logarithmic plot of deflection coefficient against length coefficient for the pinched cylindrical shell

(Fig. 4a). 8 is the radial displacement of the point of application of load P. Deflections have been obtained by

summation of Fourier terms using the results of Fig. 6, with transition curves as in Fig. 5. The broken lines
correspond to “flat plate™ results, and the form of the transition has not been investigated.

THE EFFECT OF CLAMPED EDGES

So far we have considered a pinched cylindrical shell with free ends. It is not difficult to
extend the method to deal with other boundary conditions, for example clamped edges. It is easy
to show that for each mode this corresponds simply to clamping the ends of the analogous beam
on elastic foundation, Fig. 5(c). The principal consequence is that for short beams the stiffness is
virtually the same as for a clamped-ended beam having no elastic foundation, as shown in Fig.
5(b) and this in turn leads to a modal flexibility for the shell proportional to A°, as shown in Fig. 6.
This situation corresponds almost to “membrane” theory, in which bending plays no part in
carrying the load. Our method is of course an approximate one, and does not consider the fine
detail of the zone immediately under the line of application of the load; this zone is an awkward
one in membrane theory.

Whereas for the cylindrical shell with free ends the modal flexibility decreases with n
irrespective of the regime of behaviour (Fig. 6), for clamped ends the situation is different: there is a
“most flexible mode™ at about n = n** = 1.9 72, But n is by definition an even integer, so we find
for large values of A that mode n = 2 is most flexible and dominates the deflection. In the region of
A =0.25, n = 4is the most flexible mode, and its contribution produces the “bump” in the curve in
Fig. 7. The curve has been obtained by summation of appropriate terms, taking into account the
detailed lower “transition curve” of Fig. 5(b). For smaller values of A the deflection is not so
strongly dominated by the term for the most flexible mode, and it may be shown by summation of a
simple series that for small values of A the asymptote is given by

_J_ﬂﬂlfley”uz
8=356 Ea \i) * (32)

There is an additional complication with clamped shells. For very short shells the value of n**
may be higher than (a/t)'”, so the previous calculation would be invalid. Shells as short as this
behave like a long flat plate of width 2/. As previously noted, our “‘beam on elastic foundation”
analogy is inadequate in this region. From Timoshenko[3] we find that the deflection under the
point of application of load is given by

_PP(1-1?)

8= 8TEr (33)
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This relationship is also plotted on Fig. 7. The parameter A is no longer particularly useful, and
lines for different values of a/t are given. This part of the diagram is re-plotted more effectively
by the use of the length parameter I/(at)'” in Fig. 8. Also on this diagram is given the
corresponding lines for a clamped cap of a spherical shell of radius a and thickness ¢, where [ is
now the outer radius of the cap. For sufficiently small values of !/(at)””* we use the result for a
clamped circular plate, while for the other asymptote we give the result for the case where the
zone of deformation is localised, obtained by the method outlined in an earlier section. This
diagram points out an important difference between the two kinds of shell: we can think of purely
localised deformation of a spherical shell, but not for a cylindrical shell with clamped edges
where !/(at)"*> 1.5, say.

Cylinder -
O-S‘P -

{* Filigge & Elling) y)
05 ! 2 5 0
Fig. 8. Replot of the lower left-hand corner of Fig. 7, using the parameter I/ at. Corresponding resuits for a
spherical shell (clamped at distance ! from the loaded point) are also shown. The two points represent
numerical solutions from Ref. [11], in which » =0.3.

To fill in the “transition” curves in Fig. 8 (and the corresponding parts of Fig. 7) would require
more sophisticated techniques than those described here. Even the transition curve for a
spherical shell (Fig. 8), which may be done analytically, involves laborious calculation. But the
incompleteness of the curves in Figs. 7 and 8 should not detract from what is perhaps the main
outcome of this work, namely the description of distinct regimes of structural behaviour,
depending on the values of two different geometrical groups.

This is summarised in Table 1. In any given case the first step is to work out the value of
IVtlaVa and also, if this is less than | and the shell is clamped, the value of I/Vat. In a case
where either of these is a “‘borderline value”, Figs. 7 and 8 should be consulted. The two groups
are not new in themselves; see, e.g. Chap. 7; on buckling of cylindrical shells, in Fliigge[4].
Indeed, it might be argued that Poisson’s ratio should enter the groups, and we can only plead

Table 1.
End Length  Appropriate
conditions Length Mode criterion equation
IVt
“short” inextensional 0.5 30
a\\/[ﬁ
free “long” bending/stretching Ve >1 31
aVa
“long” bending/stretching I—\/—' >2 31
a\\;z
_l_l < 1
aVa
clamped “‘short” main!y membrane and 32
i
—>1
Vat
“very short” flat-plate L <1 33
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that our energy method gives slight inaccuracies in this respect; see later. In any case this is
surely not a matter of great concern to engineers.

OTHER FEATURES OF THE METHOD

There are many interesting features of the method which we have not described. For present
purposes it should be sufficient to give short comments on some of them.

In the examples the ends of the cylindrical shell were either completely free or clamped.
Other boundary conditions for the shell are analagous to distinct boundary conditions for the
beam. For example, if the end of the shell is held circular but not restrained axially, the
corresponding beam has a simply supported end. As we have seen, bending moments in the
analogous beam correspond to stressing of the shell in the axial direction. Boundary conditions
involving axial load (like those studied experimentally by Kildegaard [14]) transform to moments
applied at the end of the analogous beam.

Our method correctly reproduces the inextensional modes for shells with small values of A,
even for low values of n. As is well known, the simplified equations of Donnell[15] give slightly
erroneous results in this region; using the kind of approximation employed by Donnell, we would
have to replace the term (n” — 1) in our expression for m (eqn (23)) by the not-so-accurate n’°. Of
course, for high values of n the difference is negligible.

In our work we have not met directly an objection which Love raised to Rayleigh’s original
work. At a completely free edge M. =0, and this requires, via the elastic law k. = — vk
Inextensional modes for cylindrical shells of course have k. =0. Bassett[16] and Lamb[17]
pointed out the nature of the ‘“boundary layer” for such shells. In our work shortwave solutions
are closely related to boundary-layer effects. Further investigation shows that the high stiffness
of these modes is responsible for their having little impact on the gross distortion of the shell.

A detailed investigation shows that many of the expressions developed by means of our
energy approach are very nearly exact. Our beam-on-elastic foundation analog would become
nearly perfect if the term (1-v?) in the expressions for B (eqn (23)) and m (eqn (29)) were
replaced by 1. This factor is attributable to the rather crude way in which we had only one of the
three strain components €, €, sy, NON-zero at a time. It is possible to develop more subtle
constraints on surface stretching which do not have an appreciable effect on the strain energy of
bending but which remove the factor (1 - v?).

Ashwell and Sabir[18] and Morley[19] have used a *‘pinched” cylindrical shell with free ends
as a test-problem for finite element calculations on shells. All calculations so far reported by
these authors have been for short shells with A <0.29, i.e. in the almost purely inextensional
régime: the results are in excellent agreement with the data of Fig. 7.

A strong feature of the method is that it can easily be adapted to deal with various kinds of
anisotropy, particularly those arising from the application of circumferential or longitudinal
stiffening ribs sufficiently closely spaced for ‘“‘smearing” to be an appropriate form of analysis.
For example, circumferential ribs may give a big boost to the circumferential bending stiffness
while having very little effect on longitudinal stretching. In the present case they would have
more effect in stiffening up a short cylinder (small A) than longitudinal ribs. The details can be
worked out easily.

Lastly we remark that A. C. Smith has done careful experiments on the deformation of model
shells subjected to point loads, and has found direct experimental confirmation for “mode
flexibility factors” of the kind shown in Fig. 6. This work will be reported elsewhere.

CONCLUSION

Two sets of conclusions may be drawn from this work. First, we can see that the kinematic
relations (1) and (2) are immediately useful. Not only do they enable us to extend Rayleigh's
method easily and naturaily to non-inextensional problems but they also give clear insight into the
kinematics of deformation of shells which is advantageous in other aspects of analysis including
plasticity, vibrations, and buckling. Examples will be reported elsewhere.

Second, we note that the method leads directly to appropriate dimensionless groups which
help to delineate distinct regimes of the structural behaviour of shells. This practical outcome will
commend the method to engineers engaged in the design of shells and also to those involved in
planning experiments and correlating existing experimental evidence.
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